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Let a coordinate system be defined with the origin at the focal point, the x-axis parallel to the camera’s horizontal axis
with positive to the right as viewed from behind the camera, the y-axis parallel to the camera’s vertical axis with positive
upward as viewed from behind the camera, and the z-axis be perpendicular to these two axes with positive extending
away from the camera.1 Let λ represent the panorama’s longitude, φ the panorama’s latitude, θ the latitudinal offset, ψ
the longitudinal offset, and f the focal length. Let a represent a point’s position vector, Rx(θ) the latitudinal rotation
matrix, d a point’s position vector in the camera’s reference frame, x and y a point’s position on the image plane, and px
and py a point’s position on an equirectangular projection.
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With a point’s position vector (1) and the latitudinal rotation matrix (2), one can calculate a point’s position in the
camera’s reference frame.
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Using the pinhole camera model, one can then calculate positions on the image plane.[
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Solving the system of (5) and (6) for λ and φ and adding the longitudinal offset, one is able to find a point’s position
on the unit sphere from its position on the image plane.
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Once a point’s position on the unit sphere is known, it is trivial to find its position on an equirectangular projection.
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1Note that this is a left-handed coordinate system.


